Коэффициент расширения бетона

Содержание

Сегодня на рынке строительных материалов можно увидеть огромный выбор новых интересных и многофункциональных продуктов. Одним из них является расширяющийся цемент, который имеет ряд особенностей, позволяющих считать его практически идеальным материалом для различных работ по капитальному ремонту. Есть, конечно, и минусы. О них также расскажем подробнее.

Расширяющиеся цементные смеси – что это?

Так называют специальную сборную группу из нескольких цементов с определенными добавками, ведущих к увеличению объема изделия. Эта особенность данного материала способствует заполнению всех пустот и трещин, а это крайне необходимо для качественного возведения различных монолитных железобетонных конструкций. Также такой цемент широко используется при строительстве всевозможных туннелей и шахт. Что касается бытового применения, то оно не очень целесообразно ввиду его дороговизны. Хотя необходимо отметить, расширяющийся цемент отлично восстанавливает разрушенные стены в старых постройках, значительно экономя при этом на расходе прочих материалов.

Данную группу цементов принято называть в соответствии с особенностями его производства — цементом гипсоглиноземистым расширяющимся. Он содержит глиноземистые основы, к которым добавлены различные компоненты, способствующие большему расширению, например:

  • гидрат окисимагния;
  • гидросульфолюмипат кальция;
  • сульфаты алюминия и хлористого кальция;
  • алюминиевый порошок;
  • сульфитно-спиртовая барда.

Добавление этих веществ вполне обоснованно, так как они довольно своеобразно реагируют на повышение влажности, запуская при этом процесс распада. В результате этого образуются новые элементы, которые имеют увеличенный объем. В дальнейшем они связываются с молекулами цемента, повышая тем самым и его размер. Знаменательно, что все эти превращения никак не уменьшают прочности цемента, а напротив добавляют ему надежности и долговечности. Наиболее распространенная добавка среди перечисленных – это гидросульфолюмипат кальция, и объясняется такое частое использование этого компонента его невысокой ценой. Лучшим же компонентом по качественным характеристикам является гидрат окиси магния — он наиболее выигрышен среди прочих, которые в целом не сильно отличаются друг от друга.

Плюсы и минусы расширяющего цемента

Какой бы материал не был идеальным, у него всегда имеются ряд достоинств и недостатков. Перечислим имеющиеся положительные качества расширяющегося цемента:

  • повышенные адгезионные и прочностные характеристики;
  • хорошая заполняемость микро- и макротрещин;
  • замена финишной штукатурки;
  • стойкость к химическому и атмосферному воздействиям.

Данные плюсы присущи любому виду этого материала. Однако он состоит не только из расширяющих компонентов, но содержит и другие вещества, влияющие на его характеристики. Например, существует особый вид расширяющегося цемента, предназначенный специально для выполнения внешних работ, так же есть разновидность этого материала с улучшенной адгезией или высокой антикоррозийной защитой.

Расширяющийся цемент отличается следующими недостатками:

  • высокой стоимостью;
  • плохим дистрибутивом;
  • узкопрофильностью;
  • большим количеством подделок.

При покупке товара у зарекомендовавших себя производителей и целевом использовании данные минусы становятся незначительными по сравнению с экономией, которая возникает в результате замены расширяющимся цементом других материалов.

Где применяется расширяющийся цемент?

Здесь необходимо уточнить, что данный материал и в самом деле имеет весьма узкое применение. Перечень основных работ, выполняемых с его помощью выглядит так. Смесь применяют, когда нужно провести работы:

  • по заполнению трещин;
  • по склейке железобетона;
  • в ряде случаев по нанесению наружной штукатурки.

Специалисты знают, что бывают микро- и макротрещины. Причины появлений первых – это механические удары при транспортировке или прочего воздействия. И хотя они не всегда видны – это отличная ниша для оседания конденсата. Под воздействием влаги происходит расширение микротрещин, которые со временем превращаются в заметные даже невооруженным глазом макротрещины.

Так как одной из ведущих характеристик расширяющегося цемента является повышенная адгезия, то он, впитываясь в конструкцию, осуществляет надежное заполнение всех внутренних пор. Данные качества и являются причиной использования этой цементной смеси для отделки помещения снаружи, тогда как внутри, где температура более стабильна, подойдет и обычная штукатурка.

РАСШИРЯЮЩИЕСЯ ЦЕМЕНТЫ

Точно так же расширяющийся цемент действует и в отношении макротрещин, хотя в этом случае необходимо будет использовать большее количество материала.

Частное строительство малоэтажных зданий частенько осуществляется с использованием железобетонных перекрытий. Как правило, они размещаются в верхних частях стен и иногда могут промазываться цементирующим составом. Однако при этом происходит нарушение строительных нормативов, в которых значится, что блоки обязаны быть монолитными в местах прилеганий.

Данные рекомендации вполне обоснованы, ведь распределение нагрузки должно быть равномерным и на плиту и на стену, в противном случае вследствие действия конденсата и других негативных факторов начнется разрушение плиты возле стыков. И если для частных домов необходимость в ремонте возникнет спустя примерно 25 лет, то, используя здание как гостиницу, с последствиями придется столкнуться уже спустя шесть лет после возведения здания. Устранить такие недостатки очень сложно — надо повторить заливку части плиты, а это значит, вновь построить леса, сделать подпоры и другие соответствующие работы. Гораздо лучше предусмотреть возникновение подобных проблем и, воспользовавшись расширяющимся цементом, связать стены с плитой. Это к тому же будет способствовать продлению эксплуатируемого срока здания.

Пожалуй, наиболее востребованный строительный материал, используемый для возведения стен – это ракушечник, отличающийся фактурностью и требующий большего количества штукатурки. Добиться экономии и меньшего расхода материала позволяет расширяющийся цемент, который может заполнить поры и создать в итоге практически монолитное покрытие, чрезвычайно стойкое и надежное. При работах с пенобетоном и шлакоблоками так же возможно использование расширяющегося цемента, но это уже не так экономично, поэтому на практике выбирают другой материал.

Разновидность расширяющегося цемента и различия в технических характеристиках

Рассмотрим более детально этот материал и его модификации, существующие на современном рынке. Выделяют следующие основные виды:

  • водонепроницаемый расширяющийся цемент;
  • гипсоглиноземистый расширяющийся цемент;
  • напрягающий цемент;
  • расширяющийся портландцемент;
  • пластифицированный расширяющийся цемент.

Самый известный среди перечисленного — это водонепроницаемый цемент, который очень часто используют как гидроизоляционный материал. Другие разновидности отличаются большими расширяющими свойствами, в то время как водонепроницаемая модификация отлично выполняет функции наружной штукатурки. Он содержит:

  • глиноземистый цемент;
  • гипс;
  • высокоосновной алюминат кальция.

Благодаря входящим веществам такой материал отличается высокой скоростью схватывания – нанеся раствор, процесс запуска первой фазы происходит уже через четыре минуты, а спустя десять минут цемент схватывается в полном объеме. В связи с линейным типом расширения объем раствора увеличивается равномерно в соответствии с ГОСТом, то есть, не больше одного процента за сутки. Такие характеристики благоприятствуют использованию цемента в качестве штукатурки, ведь после того как цемент окончательно затвердеет – это где-то спустя 18-26 часов, поверхность становится невероятно прочной и гладкой.

Следующий вид цемента тоже можно отнести к гидроизоляторам. Он имеет похожие свойства, хотя основывается на высокоглиноземистом клинкере, который способствует повышенной прочности, но имеет больший срок затвердевания – этот диапазон варьируется от 70 до 85 часов. Стоимость такого цемента выше, так что для использования в быту он не выгоден.

Что касается напрягающего цемента или как его еще называют НЦ, то он создавался исключительно для выполнения ремонтных и восстановительных работ, а особенно эффективен он, если они касаются железобетонных конструкций. НЦ состоит из:

  • портландцемента, который составляет от 70 до 75%;
  • глиноземистого цемента – от 15 до 20%;
  • гипса – около 10%.

А теперь подробнее…

Весьма продуманный состав цемента позволяет удобно работать с ним.

Катализатором НЦ служит простая вода. Нанеся раствор на поверхность, ее необходимо полить и через полчаса сделать еще один слой. Затем по прошествии четырех часов происходит схватывание цемента и впитывание им влаги – все это способствует расширению и связыванию железобетона. После 70 часов можно констатировать его окончательное затвердевание. Использование данного материала эффективно при работах с железобетонными конструкциями, т.к. увеличивает вдвое его прочностные характеристики. Это способствует применению напрягающего цемента в различных промышленных областях. НЦ предназначен для больших нагрузок, так что его использование в быту неразумно.

Еще одну марку расширяющегося цемента представляет РПЦ – именно под таким названием известен многим портландцемент. Получается он в результате смешивания двух веществ – это клинкерный портландцемент и гипс. Кроме этого, к нему добавляют доменный шлак, обеспечивающий высокие прочностные характеристики, способствующие использованию РПЦ для создания монолитных конструкций. В отличие от предыдущего вида РПЦ негативно относится к поливу, а его расширение происходит только при повышенной влажности, т.е. необходима своеобразная парилка, которая в реальности заменяется на единоразовое пропаривание. Соблюдая необходимые требования, цемент окончательно затвердевает через 65-80 часов. Еще одной особенностью этого вида является то, что он относится не к линейному типу, поэтому не подходит в качестве финишного материала.

Последний вид расширяющего вяжущего материала – это пластифицированный цемент, который появился на рынке совсем недавно. В его основе обычный портландцемент с пластифицирующими элементами, которые, как правило, являются концентратами сульфитно-спиртовой бражки. И здесь на первый план выходит не только высокая прочность этого материала, но и пластичность, которая помогает создавать такие рабочие поверхности, как дороги, отмостки, заливки для пола и пр. Пластифицированный цемент имеет линейный тип расширения, применяется в основном в смешанном виде, хорошо взаимодействуя с бетоном либо простым цементом.

Производство расширяющегося цемента

Несмотря на то, что существует немало компаний, которые предлагают этот материал, приобрести его не так легко. И объясняется это следующими факторами: крупные производители не заинтересованы в розничных покупателях, а мелкие кустарные заводы выпускают не всегда качественную продукцию. Проанализировав предлагаемый на рынке цемент, специалистами были выделены основные производители этого материала. Это:

  • Пашийский металлургический цементный завод – имеет развитую дистрибьюторскую сеть, специализация – гипсоглиноземистые цементы.
  • Пермский металлургический цементный завод – крупнейшее предприятие в России, имеющее огромный выбор и различные модификации цемента.
  • Мордовский цементный завод – выпускает меньше продукции, среди которой большая часть – расширяющийся портландцемент.
  • «Macflow», а ныне «Master Emaco» — предлагает кроме всего прочего пластифицированный цемент, не выпускаемый в России. Продукция отличается качеством и довольно высокой ценой.

Расширяющийся цементЦементная смесь

Безусадочный бетон

Схема работы

Оставляете заявку

Круглосуточно.
Всегда с вами,
днем и ночью.

Уточняем детали
и делаем
предложение

Любые консультации
по строительству
и материалам.

Согласовываем
сроки отгрузки
и способы оплаты

Низкая цена.
Любая форма
оплаты.

Изготавливаем
бетонную смесь

Все по ГОСТ.
Импортное
оборудование,
стабильное качество.

Доставляем
ваш заказ

Всегда в срок.
Без сюрпризов.

Усадка бетона может повлечь за собой повреждение готовой конструкции и трещины. Усадка происходит из-за того, что при затвердевании смеси влага постепенно выпаривается, поэтому поверхность не выдерживает нагрузки и деформируется. Чтобы избежать этого, производители стали добавлять в смеси особые пластификаторы, таким образом получив безусадочный бетон.

Состав безусадочной смеси на мелком заполнителе

Основу данного типа бетонных смесей составляет цемент, который может встречаться в различных типах, например, безусадочные и сульфоферритные портландцементы, гипсоглиноземистые и подобные. Заполнители для приготовления берутся мелкие. Чаще всего встречается смесь на песочном заполнителе, который смешивается с цементом в соотношении 1:1 и 2:1. В состав смеси могут входить также пластификаторы, а также другие добавки, улучшающие его характеристики.

Для чего нужен расширяющийся цемент?

Для чего нужен тиксотропный бетон?

Область применения тиксотропного материала широка, он может использоваться для:

  • Получения безусадочных смесей бетона с повышенной ранней и конечной прочностями;
  • Ремонта нагружаемых элементов и частей конструкций, например, усиленных балок с эксцентрическим напряжением;
  • Защиты бетона от негативного воздействия едких соединений, например, сульфатов;
  • Ремонта конструкций в промзонах, где применяются минеральные масла и углеводороды;
  • Нагнетания в каналы, где имеются напрягаемые арматуры или анкеры, находящиеся под высоким механическим напряжением;
  • Возведения фундаментов портов, АЭС, турбогенераторов и подобных сооружений;
  • Изготовления густоармированных железобетонов;
  • Бетонирования зазоров размером в несколько мм между камнями, элементами кладки и т. п.;
  • Укладки бетона при высокой влажности и с подачей на большую высоту (200 и более м);
  • Заливки элементов из железобетона и конструкционных стыков;
  • Изготовления смесей анкерных растворов.

Это наиболее популярные области применения безусадочного бетона, он может применяться и в других типах строительства.

Рассчитайте необходимый объем бетона
БСГ и арматуры на ваш объект

Особенности безусадочного бетона на мелком заполнителе

У данного бетона есть 2 наиболее заметных преимущества:

  • Он относится к ненапрягающим, значит, после затвердевания не покроется сколами и трещинами из-за воздействия воды;
  • Он обладает высокой гидроизоляцией, что позволяет его использовать для возведения бассейнов и в условиях повышенной влажности.

Безусадочный бетон характеризуется:

  • Отсутствием токсичных соединений в составе;
  • Высокой прочностью и устойчивостью к механическим воздействиям;
  • Влагостойкостью;
  • Морозостойкостью;

Такие характеристики достигаются благодаря тому, что в состав смеси входит большое количество суперпластификаторов, что компенсирует повреждения при усадке.

Также высокопрочный бетон отличается оптимальными показателями линейного расширения и застывания, что делает его отличным материалом для ремонта конструкций.

Получение готового раствора на песочном заполнителе

Приготовление начинается с того, что смесь в сухом виде доставляют на строительный объект в таком объёме, чтобы он не превышал необходимый для одной смены. Далее приготовление протекает в смесителях по такой технологии:

  • Воду в необходимой пропорции вводят в 2 приёма;
  • Для регуляции характеристик твердения или повышения морозостойкости вводят добавки, соответствующие ГОСТам;
  • Для повышения пластичности в состав могут добавляться пластифицирующие вещества.

Когда смесь готова и соответствующе уложена, её необходимо накрыть пленкой по водонасыщенным матам из поролона, которые кладутся поверх забетонированного участка. В крайних случаях можно использовать водосохраняющую пленку на основе латекса.

Эксплуатация покрытий из бетона может начинаться спустя 2 недели, поскольку смесь к этому времени набирает достаточную прочность.

Приобрести качественный безусадочный бетон в Санкт-Петербургу

Вам нужен морозостойкий бетон, который не пойдет трещинами от усадки? Обращайтесь в нашу компанию! Ассортимент включает все необходимые для ремонта и строительства смеси, отличается оптимальной ценой и высоким качеством.

Наши клиенты

Возврат к списку

Саморасширяющийся цемент: область применения

Вопрос.Здравствуйте! Подскажите пожалуйста, что такое коэффициент расширения бетона? Какое его практическое применение?

Саморасширяющиеся цементы – специальные строительные смеси

Спасибо!

Ответ. Добрый день! В строительной практике применяется коэффициент температурного расширения бетона. Его значение определяет отклонение линейных размеров бетонной плиты (бетонного блока) при изменении температуры окружающей среды.

Поэтому данный параметр еще называют – коэффициент линейного расширения бетона. Среднее числовое значение коэффициента линейного расширения, которое используется проектировщиками для расчетов, оговорено в нормативном документе  СНиП 2.06.08-87 «Бетонные и железобетонные конструкции гидротехнических сооружений» и составляет 0,00001 °С-1 (Градус Цельсия в минус первой степени).

Чтобы узнать на сколько увеличится размер бетонного блока необходимо перемножить: величину линейного размера, коэффициент теплового расширения бетона и разницу температуры. Например, бетонный блок длиной 550 мм, при нагреве на 40 градусов Цельсия увеличится на: 550х0,00001х40=0,22 мм.

Практическое применение коэффициента расширения бетона

Долговечность бетонных сооружений испытывающих значительные перепады температуры зависит от коэффициента линейного расширения заполнителя (щебень, гравий, известняк, мраморная крошка и пр.) и разницы между коэффициентами линейного расширения заполнителя и цементного теста.

При этом коэффициент расширения заполнителя определяет коэффициент теплового расширения бетона. Следовательно, для строительства бетонных сооружений работающих в условиях значительного перепада температуры, необходимо подбирать горные породы (заполнитель) обладающие коэффициентом расширения ниже, чем коэффициент расширения цементного камня.

К таким горным породам относится широко применяемый гранит (коэффициент расширения 0,0000074 °С-1), базальт (коэффициент расширения 0,0000065 °С-1)и известняк (коэффициент расширения 0,000008). К не рекомендованным горным породам относятся: калиевые полевые шпаты, кальцит, мрамор и другие горные породы с большим количеством монокристаллов.

Вывод. Так как в частном строительстве в качестве наполнителя, как правило, используется гранитный, гравийный или известняковый щебень вы можете не обращать внимания на коэффициент расширения бетона – долговечность вашего сооружения не зависит от данной характеристики.

Навигация:
Главная → Все категории → b1

Бетон напрягающий
Бетон напрягающий
Бетон напрягающий — бетон на основе цемента напрягающего. От обычного бетона на портландцементе его отличает способность расширяться в нач. период твердения и растягивать находящуюся в сцеплении с ним арматуру, приобретая при этом напряжения собственного обжатия, т.н. самонапряжение. Получаемые т.о. предварительно напряж. конструкции наз. самонапряженными ж.-бет. конструкциями.

Основу напрягающего цемента составляет портландцементный клинкер (около 2/3 состава), к к-рому при помоле добавляют повыш. по сравнению с портландцементом кол-во гипса, а также дополнительно высокоалюминатные шлаки, являющиеся, как правило, отходами металлургия, пром-сти. Объемное расширение цементного камня обусловлено образованием в процессе его гидратации гидро-сульфоалюмината кальция (т.н. "цементной бациллы"), имеющего объем больший, чем сумма объемов исходных компонентов.

Различают т.н. свободное расширение, когда цементному камню, напрягающему цементу и бетону на его основе не препятствуют внешн. ограничения в виде смешанных элементов конструкций (в стыке, шве), связанной с ним сцеплением или анкерами арматуры, либо противодействующих внешн. сил. При наличии таких ограничений или воздействий имеет место связанное расширение. В этом случае цементный камень или бетон развивает давление на препятствие, проявляющееся в виде распора в швах и стыках или растяжения арматуры независимо от ее направления в бетоне.

Свободное расширение контролируют, как правило, только при произ-ве напрягающего цемента как более чувствит. показатель, оно составляет 0,2—2,5%. Связанное расширение контролируют при произ-ве цемента (в цементно-песчаном р-ре 1:1), фиксируя его в виде марки по самонапряжению — НЦ-10, НЦ-20, НЦ-30 и НЦ-40 (соответственно самонапряжение не менее 0,7, 2, 3 и 4 МПа), а также для определения фактич. марки бетона по самонапряжению, когда она предусмотрена в проекте конструкции.

Связанное расширение помимо энер-гетич. св-в цемента и бетона зависит от степени ограничения расширения, поэтому испытания Б.н. проводят на стандартных образцах-призмах размерами от 4х4х 16 см для цемента до 1 Ох 10×40 см для бетона, используя стандартные динамо-метрич. кондукторы соответствующего типоразмера, создающие в отформованных в них образцах упругое сопротивление расширению, эквивалентное наличию в образцах продольного армирования 1 %.

Подбор состава Б.н. по прочности на сжатие не отличается от подбора состава обычного бетона на портландцементе, однако расход вяжущего может быть снижен практически на 10%. Могут быть получены бетоны классов В15—В40 и выше.

Расширяющиеся цементы

При одинаковой прочности бетона на сжатие Б.н. имеет прочность при растяжении на 20% выше, чем бетон на портландцементе. Существует ряд марок по самонапряжению от Sp0,6 до Sp4 (в МПа).

Для получения заданной проектной марки по самонапряжению необходимо учитывать не только активность напрягающего цемента по самонапряжению, но и расход вяжущего, водоцементное отношение и в нек-рых случаях влажностные условия твердения.

Бетон напрягающий характеризуется маркой по водонепроницаемости не ниже W12, в связи с чем в выполняемых из него конструкциях не требуется устройства гидроизоляции и во мн. случаях антикорроз. защиты.

Существует разновидность Б.н. — бетон с компенсированной усадкой, отличающийся тем, что при сохранении всех остальных св-в в нем не нормируется марка по самонапряжению. Для изготовления такого бетона применяют, как правило, напрягающий цемент марок НЦ-10 или НЦ-20. Бетон с компенсиров. усадкой целесообразно применять взамен обычного бетона на портландцементе практически для всех конструкций, что обеспечивает компенсацию усадки и ее отрицат. последствий как на этапе изготовления конструкций (от образования технологич. трещин), так и при эксплуатации.

Технологич. св-ва Б.н. сходны со св-вами бетона на портландцементе, однако при повыш. темп-рах (30 °С и выше) наблюдается тенденция к более заметному ускорению твердения (набору прочности) и, частично, схватыванию смеси. Это позволяет сократить продолжительность и снизить темп-ру тепловлажностной обработки изделий заводского изготовления. Сроки схватывания бетонов и растворов на напрягающем цементе регулируются в широких пределах: от ускорения схватывания до 1—2 мин, что применяется для остановки протечек при ремонте конструкций под гидростатич. напором, до удлинения схватывания до 2—3 ч (при необходимости длит, транспортировки смеси). Для этого добавляют ускорители и пластификаторы, а также используют метод т.н. предварит, частичной гидратации, заключающийся в предварит, перемешивании (до затворения) напрягающего цемента с частично увлажненным заполнителем либо двухстадийном перемешивании смеси. Учитывая особенности Б.н., его применение особенно эффективно в конструкциях, к к-рым предъявляются требования повыш. водонепроницаемости и трещино-стойкости (в т.ч. при использовании подвижных смесей), спец. гидроизоляции в этом случае не требуется. Это сборные и монолитные емкостные, подземные конструкции разл. назначения и стыки в них, трубы напорные и безнапорные, транспортные и коммуникац. тоннели, безрулонные кровли, покрытия полов, дорог, аэродромов и автодорожных мостов, а также основания искусств, конькобежных дорожек и ледовых полей без швов или с увелич. расстоянием между ними, элементы объемного домостроения. Применяют Б.н. для герметизации и защиты от источников ра-диац. излучений, а также для изготовления предварительно напряж. конструкций с целью компенсации потерь напряжений от усадки и др. видов конструкций и сооружений, в т.ч. ж.-бет. конструкций массового произ-ва, взамен обычного бетона как тяжелого, так и легкого.

Похожие статьи:
Болты

Навигация:
Главная → Все категории → b1

Статьи по теме:

Главная → Справочник → Статьи → Блог → Форум

Коэффициент линейного расширения бетона

Коэффициенты линейного расширения строительных материалов

В таблице представлены значения коэффициента линейного расширения строительных материалов (КТЛР) и некоторых металлов при температуре до 100°С. Размерность коэффициента расширения в таблице — м/(м·°С) или 1/град (К-1).

В таблице рассмотрены: алюминий Al, медь Cu, сталь, гранит, базальт, кварцит, песчаник, известняк, стеновой кирпич, клинкерный кирпич, силикатный кирпич, легкобетонные камни, газобетонные блоки, бетон, железобетон, цементный раствор, известковый раствор, сложные штукатурки, дерево, параллельно волокнам, стекло.

Из указанных строительных материалов наиболее низким коэффициентом теплового линейного расширения обладает клинкерный кирпич (его КТЛР равен 3,5·10-6 1/град), а также древесина, штукатурки, стеновой кирпич и базальт. Следует отметить, что высокий коэффициент теплового расширения свойственен металлам таким, как алюминий, медь или сталь. Например, коэффициент линейного расширения алюминия равен 24·10-6 1/град, что в 2 раза больше, чем у стали.

Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.

Чтобы вычислить увеличение линейных размеров материала за счет теплового расширения, необходимо умножить значение температурного коэффициента линейного расширения на линейный размер материала и на разность температур в градусах Цельсия или Кельвина. Например, стеновой кирпич (КТЛР= 0,000006 град-1) длиной 240 мм при нагревании на 100 градусов удлинится на 0,144 мм.

По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Плотность бетона. Усадка и набухание бетона. Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Плотность бетона.

Практическая плотность тяжелого (обычного) бетона составляет 2,3 г/см3 = 2300 кг/м3. (1,8-2,7 г/см3 ).

Усадка и набухание бетона.

Изменение размера бетонных конструкций из-за изменения влажности бетона это усадка и набухание. Происходит даже при неизменной температуре.

Усадка бетона имеет довольно сложную природу, но факт в том, что при твердении бетона на воздухе — при высыхании он будет иметь усадку порядка 0,3 мм на каждый метр линейного размера. Чем больше была доля цемента в растворе, тем выше усадка. При большой толщине бетона он высохнет снаружи, а внутри — еще нет, что приводит к появлению внутренних напряжений и дефектам.

Обратный процесс — набухание сухого бетона под действием влаги характеризует та-же величина 0,3 мм/м. Чем больше была доля цемента в растворе, тем выше набухание.

Поэтому, даже для работы бетонной конструкции в условиях постоянной температуры необходимо преусматривать усадочные швы.

Теплоемкость, теплопроводность и линейный коэффициент теплового расширения бетона.

Изменение линейного размера бетона под действием температуры характеризуется линейным коэффициентом теплового (температурного) расширения. Характерной величиной коэффициента для бетона является 0,00001 (°С)-1, следовательно, при изменении температуры на 80 °С (-40/+40 °С) расширение достигает примерно 0,8 мм/м. Таким образом, в любой бетонной конструкции необходимы температурные швы.

Температурно усадочный шов в РФ уж никак не может быть менее 1,1 мм на метр линейного размера (0,3 мм — усадка, 0,8 — температурный), в СНИПах — величины выше и они, конечно, обязательны, когда обязательны. Имейте в виду, что температурные колебания более 80 °С почти наверняка вызовут растрескивание бетона с жестким наполнителем из-за разницы в тепловом раширении раствора и наполнителя.

Теплопроводность монолитного бетона в воздушно-сухом состоянии 1,35 Вт/(м*°С) = 1,5 ккал/(ч*м*°С). Высокая теплопроводность тяжелого бетона требует обязательного утепления наружных бетонных стен.

Теплопроводность пористых бетонов — от 0,35 до 0,7 Вт/(м*°С) = 0,3-0,6 ккал/(ч*м*°С), но при огромном снижении прочности.

Теплоемкость удельная тяжелого и пористых бетонов в сухом состоянии — порядка 1 кДж/(кг*°С) = 0,2 ккал/(кг °С)

Теплоемкость объемная тяжелого бетона — порядка 2,5 кДж/(м3*К) а пористых — зависит от плотности.

Теплоемкость удельная бетонной смеси (незастывшей) сотавляет порядка 1,5 кДж/(кг*°С) = 0,3 ккал/(кг °С), но помните — смесь легче тяжелого бетона и тяжелее пористого.

Теплоемкость бетона Коэффициент расширения бетона

При строительстве домов с использованием бетона, всегда производятся расчеты, так вот для этого обязательно нужно знать удельную теплоемкость бетона. Удельная теплоемкость или просто теплоемкость бетона, очень важна и без нее не обойтись, в строительстве, когда например рассчитывается теплопроводность конструкции, для того что определить расходы на ускорение твердения строения из бетона.

Теплоемкость бетона — это количество тепла, которое нужно передать бетону, для того что бы его температура изменилась, на одну единицу.

Связанные статьи: Преимущества пенобетона

Коэффициент расширения бетона

Меняющийся размер бетона, из за влияния температуры, обозначается коэффициентом расширения бетона. Размер этого коэффициента расширения бетона равен 0.00001 (ºС)-1, а это означает, что если температура изменится на 80 ºС, то расширение будет около 0.8 мм/м. Получается, что для любой бетонной постройки требуются температурные швы.

Температурно усадочные швы

Температурно усадочные швы, в России должны быть начиная от 1.1 мм на 1м, делая вывод из расчета 0.3 мм — это усадка + 0.8 — температурный коэффициент. В строительных нормах и правилах (СНИП), размеры больше, так же стоит учитывать и то, что изменения температур порядка 80 ºС и больше, вызывают трещины в бетоне, который имеет жесткий наполнитель внутри, потому что существует разница коэффициентов расширения раствора и внутреннего наполнителя.

Связанные статьи:

  • Дома из пенобетонных блоков
  • Сколько цемента в кубе бетона

Теплоемкости бетонов

Теплопроводность монолитных бетонов при условии что он воздушно-сухой составляет порядка 1.35 Bт/(m*ºC) = 1.5 ккал/(ч*м*ºС). Высокие характеристики теплопроводности такого тяжелого бетона, заставляют обязательно использовать утепление наружных стен из монолитного бетона.

Теплопроводность пористого бетона и его разновидностей — составляет порядка 0.35 — 0.75 Bт/(m*ºC)= 0.3-0.6 ккал/(ч*m*ºC), учитывайте, что прочность таких бетонов значительно ниже.

Удельная теплоемкость тяжелых и пористых бетонов (сухих) — около 1кДж/(кг*ºС) = 0.2 ккал/(кг*ºC)

Объемная теплоемкость тяжелых бетонов — около 2.5 кДж/(м3*К), пористых же зависит и изменятся от их плотности.

Смотрите так же: Керамзитобетон состав и пропорции

Удельная теплоемкость бетонной смеси (жидкой)- около 1.5 кДж/(кг*ºC) = 0.3 kkal/(kg*ºC), не забывайте, что такая смесь легче, чем тяжелый бетон и тяжелее чем пористый.

  1. Значит, теплоемкость бетона чаще всего от 0.17 и до 0.22 ккал/кг. Как и теплоемкость у многих каменных материалов.
  2. Становится понятно, почему дерево теплое, а бетон холодный, все из за низкой теплоемкости бетона. Теплопроводность дерева 0.6-0.7, что почти в 3 раза больше.
  3. Коэффициент расширения бетона — показывает изменение бетона. Для бетона он равняется 10*10^-6. Почти как и у коэффициента расширения стали (в зависимости от марки они так же изменяются), в связи с чем железобетонные конструкции очень распространены.

Температурный коэффициент линейного расширения

Материал

Коэффициент линейного теплового расширения

10-6 °С-1

10-6 °F-1

ABS (акрилонитрил-бутадиен-стирол) термопласт 73.8 41
ABS — стекло, армированное волокнами 30.4 17
Акриловый материал, прессованный 234 130
Алмаз 1.1 0.6
Алмаз технический 1.2 0.67
Алюминий 22.2 12.3
Ацеталь 106.5 59.2
Ацеталь , армированный стекловолокном 39.4 22
Ацетат целлюлозы (CA) 130 72.2
Ацетат бутират целлюлозы (CAB) 25.2 14
Барий 20.6 11.4
Бериллий 11.5 6.4
Бериллиево-медный сплав (Cu 75, Be 25) 16.7 9.3
Бетон 14.5 8.0
Бетонные структуры 9.8 5.5
Бронза 18.0 10.0
Ванадий 8 4.5
Висмут 13 7.3
Вольфрам 4.3 2.4
Гадолиний 9 5
Гафний 5.9 3.3
Германий 6.1 3.4
Гольмий 11.2 6.2
Гранит 7.9 4.4
Графит, чистый 7.9 4.4
Диспрозий 9.9 5.5
Древесина, пихта, ель 3.7 2.1
Древесина дуба, параллельно волокнам 4.9 2.7
Древесина дуба , перпендикулярно волокнам 5.4 3.0
Древесина, сосна 5 2.8
Европий 35 19.4
Железо, чистое 12.0 6.7
Железо, литое 10.4 5.9
Железо, кованое 11.3 6.3
Золото 14.2 8.2
Известняк 8 4.4
Инвар (сплав железа с никелем) 1.5 0.8
Инконель (сплав) 12.6 7.0
Иридий 6.4 3.6
Иттербий 26.3 14.6
Иттрий 10.6 5.9
Кадмий 30 16.8
Калий 83 46.1 — 46.4
Кальций 22.3 12.4
Каменная кладка 4.7 — 9.0 2.6 — 5.0
Каучук, твердый 77 42.8
Кварц 0.77 — 1.4 0.43 — 0.79
Керамическая плитка (черепица) 5.9 3.3
Кирпич 5.5 3.1
Кобальт 12 6.7
Констанан (сплав) 18.8 10.4
Корунд, спеченный 6.5 3.6
Кремний 5.1 2.8
Лантан 12.1 6.7
Латунь 18.7 10.4
Лед 51 28.3
Литий 46 25.6
Литая стальная решетка 10.8 6.0
Лютеций 9.9 5.5
Литой лист из акрилового пластика 81 45
Магний 25 14
Марганец 22 12.3
Медноникелевый сплав 30% 16.2 9
Медь 16.6 9.3
Молибден 5 2.8
Монель-металл (никелево-медный сплав) 13.5 7.5
Мрамор 5.5 — 14.1 3.1 — 7.9
Мыльный камень (стеатит) 8.5 4.7
Мышьяк 4.7 2.6
Натрий 70 39.1
Нейлон, универсальный 72 40
Нейлон, Тип 11 (Type 11) 100 55.6
Нейлон, Тип 12 (Type 12) 80.5 44.7
Нейлон литой , Тип 6 (Type 6) 85 47.2
Нейлон, Тип 6/6 (Type 6/6), формовочный состав 80 44.4
Неодим 9.6 5.3
Никель 13.0 7.2
Ниобий (Columbium) 7 3.9
Нитрат целлюлозы (CN) 100 55.6
Окись алюминия 5.4 3.0
Олово 23.4 13.0
Осмий 5 2.8
Палладий 11.8 6.6
Песчаник 11.6 6.5
Платина 9.0 5.0
Плутоний 54 30.2
Полиалломер 91.5 50.8
Полиамид (PA) 110 61.1
Поливинилхлорид (PVC) 50.4 28
Поливинилденфторид (PVDF) 127.8 71
Поликарбонат (PC) 70.2 39
Поликарбонат — армированный стекловолокном 21.5 12
Полипропилен — армированный стекловолокном 32 18
Полистирол (PS) 70 38.9
Полисульфон (PSO) 55.8 31
Полиуретан (PUR), жесткий 57.6 32
Полифенилен — армированный стекловолокном 35.8 20
Полифенилен (PP), ненасыщенный 90.5 50.3
Полиэстер 123.5 69
Полиэстер, армированный стекловолокном 25 14
Полиэтилен (PE) 200 111
Полиэтилен — терефталий (PET) 59.4 33
Празеодимий 6.7 3.7
Припой 50 — 50 24.0 13.4
Прометий 11 6.1
Рений 6.7 3.7
Родий 8 4.5
Рутений 9.1 5.1
Самарий 12.7 7.1
Свинец 28.0 15.1
Свинцово-оловянный сплав 11.6 6.5
Селен 3.8 2.1
Серебро 19.5 10.7
Скандий 10.2 5.7
Слюда 3 1.7
Сплав твердый (Hard alloy) K20 6 3.3
Сплав хастелой (Hastelloy) C 11.3 6.3
Сталь 13.0 7.3
Сталь нержавеющая аустенитная (304) 17.3 9.6
Сталь нержавеющая аустенитная (310) 14.4 8.0
Сталь нержавеющая аустенитная (316) 16.0 8.9
Сталь нержавеющая ферритная (410) 9.9 5.5
Стекло витринное (зеркальное, листовое) 9.0 5.0
Стекло пирекс, пирекс 4.0 2.2
Стекло тугоплавкое 5.9 3.3
Строительный (известковый) раствор 7.3 — 13.5 4.1-7.5
Стронций 22.5 12.5
Сурьма 10.4 5.8
Таллий 29.9 16.6
Тантал 6.5 3.6
Теллур 36.9 20.5
Тербий 10.3 5.7
Титан 8.6 4.8
Торий 12 6.7
Тулий 13.3 7.4
Уран 13.9 7.7
Фарфор 3.6-4.5 2.0-2.5
Фенольно-альдегидный полимер без добавок 80 44.4
Фторэтилен пропилен (FEP) 135 75
Хлорированный поливинилхлорид (CPVC) 66.6 37
Хром 6.2 3.4
Цемент 10.0 6.0
Церий 5.2 2.9
Цинк 29.7 16.5
Цирконий 5.7 3.2
Шифер 10.4 5.8
Штукатурка 16.4 9.2
Эбонит 76.6 42.8
Эпоксидная смола , литая резина и незаполненные продукты из них 55 31
Эрбий 12.2 6.8
Этилен винилацетат (EVA) 180 100
Этилен и этилакрилат (EEA) 205 113.9

Эфир виниловый

16 — 22 8.7 — 12

Примечание: источниками справочных данных являются публикации в Интернете, поэтому они не могут считаться «официальными» и «абсолютно точными». Как правило, в Интернет справочниках не приводятся ссылки на научные работы, являющиеся основой опубликованных данных.

Расширяющийся цемент

Мы стараемся брать информацию из наиболее надежных научных сайтов. Однако если кого-то интересуют ссылки на эксперименты, советуем произвести самостоятельно углубленный поиск в Интернете. Будем признательны за любые комментарии к нашим справочным таблицам, а особенно за уточнения существующей информации или дополнение справочных данных.

Вас также может заинтересовать:

Коэффициент объемного расширения

ТКЛР материалов, используемых в электронике

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *