Классификация строительных материалов

Содержание

Классификация строительных материалов по назначению. Основные свойства строительных материалов.

Материаловедение — это наука, изучающая связь состава, строения и свойств материалов, закономерности их изменения при физико-химических, физических, механических и др. воздействиях.

Строительные материалы оказывают решающее влияние на технико-экономическую эффективность, безопасность строительства и эксплуатацию зданий и сооружений. Строительные материалы составляют более 50 % сметной стоимости объектов.

Данная дисциплина является первой инженерной дисциплиной, которая закладывает базу для изучения специальных дисциплин – строительных конструкций, технологии строительного производства, экономики, управления и организации строительства, архитектуры и др.

Каждый материал имеет название, структуру, показатели качества или свойства, их численные значения, способы производства, условия и особенности применения и т.д. Всё это надо знать, чтобы считать себя настоящим строителем.

Концепция безопасности по отношению к строительным материалам обозначает обеспечение функциональных свойств, экологической чистоты, пожаробезопасности и безвредности материалов в течение всего их срока службы. Это относится к конечной строительной продукции – конструкции, здания, сооружения, которые сделаны из строительных материалов.

1. Классификация строительных материалов.

Поэтому для обеспечения безопасности необходимо знать функциональное назначение, условия эксплуатации конечной продукции при изучении, выборе и разработке строительного материала, что обеспечивает стабильность его показателей во время эксплуатации.

Любой строительный объект должен отвечать условиям безопасности, быть функционален и экономически состоятелен. Необходимо также учитывать желание заказчика.

Исходя из условий работы материала в сооружениях, строительные материалы можно разделить классифицировать по назначению и технологическому признаку на 2 группы:

Строительные материалы:

1 группа:

конструкционные материалы, которые воспринимают и передают нагрузки (природные каменные материалы, бетоны, растворы, керамика, стекло, ситаллы, металлы, полимеры, древесина, композиты и др.);

2 группа:

строительные материалы специального назначения — теплоизоляционные, акустические, гидроизоляционные, герметики, кровельные, отделочные, антикоррозионные, огнеупорные материалы, материалы для радиационной защиты и т.д.

Теплоизоляционные:

• основное назначение -свести до минимума перенос теплоты через ограждающие конструкции и тем самым обеспечить необходимый тепловой режим помещения при оптимальных затратах энергии.

Акустические:

(звукопоглощающие и звукоизоляционные) – снижающие уровень «шумового загрязнения» помещения.

Гидроизоляционные и кровельные:

• для создания водонепроницаемых слоев на кровле, подземных сооружениях и других конструкциях, которые необходимо защищать от воздействия воды или водяных паров.

Герметизирующие:

• для заделки стыков в сборных конструкциях.

Отделочные:

• для улучшения декоративных качеств строительных конструкций, а также для защиты конструкционных, теплоизоляционных и других материалов от внешних воздействий.

Специального назначения:

• (огнеупорные, кислотоупорные и т.д.), применяемые при возведении специальных сооружений.

Классификация.

В основу классификации по технологическому признаку положены вид сырья, из которого получают материал и способ изготовления.

Эти два фактора во многом определяют свойства материала и соответственно область его применения.

По способу изготовления различают материалы, получаемые:

— спеканием (керамика, цемент);

— плавлением (стекло, металлы);

— омоноличиванием с помощью вяжущих веществ (бетоны, растворы);

— механической обработкой природного сырья (природный камень, древесные материалы).

Свойства

Свойства материалов имеют названия и оцениваются численными значениями, которые устанавливаются путем стандартных испытаний.

Надежность.

• это комплексное свойство объекта сохранять во времени в установленных пределах значения всех параметров при выполнении требуемых функций в заданных условиях эксплуатации и технического обслуживания. Она складывается из долговечности, безотказности, ремонтопригодности и сохраняемости.

Долговечность.

• свойство объекта (изделия) сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта (срок службы).

Например, для железобетонных и каменных конструкций нормами предусмотрены три степени долговечности: I – соответствует сроку не менее 100 лет; II – 50 лет; III – 20 лет.

Безотказность — свойство изделия сохранять работоспособность в определенных режимах и условиях эксплуатации в течение некоторого времени без вынужденных перерывов на ремонт.

Отказомназывают событие, при котором система, элемент или изделие полностью или частично теряют работоспособность.

Ремонтопригодность.

• свойство объекта (изделия) к поддержанию и восстановлению работоспособного состояния при техническом обслуживании и ремонте.

Сохраняемость

• свойство объекта (изделия) сохранять в заданных пределах эксплуатационные показатели в течение и после срока хранения и транспортирования установленного технической документацией.

Состав и строение материалов.

Основные свойства строительных материалов (физические, механические, химические) определяются их химическим составом и строением.

В зависимости от химического состава строительные материалы принято делить на:

— органические (древесина, битум, пластмассы);

— неорганические (минеральные) (природный камень, бетон, керамика);

— металлические ( сталь, чугун, цветные металлы).

Химический состав.

неорганических веществ удобно выражать количеством содержащих в них оксидов (%). Основные и кислотные оксиды химически связаны между собой и образуют минералы, которые и определяют многие свойства материала.

Минеральный состав

• показывает, какие минералы и в каком количестве содержаться в строительном материале.

Фазовый состав

это наличие твердого вещества, образующее стенки пор т.е. «каркас» материала и поры, заполненные воздухом, газом или водой. Причем, если поры материала заполнены водой, то его, например, теплофизические свойства существенно изменяются, так же, как и влажностные деформации. Если вода в порах замерзает, то она изменяет свое фазовое состояние и возникают большие напряжения, которые весьма изменяют механические и деформативные свойства материала..

Вещественный состав

• составляют вещества, входящие в материал: например, многокомпонентные цементы и др.).

Состав

От состава материала зависит его структура или строение, которые, в свою очередь, влияют на его свойства.

В материаловедении принято использовать термин строение материала. Существует научно доказанная взаимосвязь между тремя составляющими выражения: «состав – структура – свойства».

Строение материала изучают на 3-х уровнях:

1. Макроструктура материала – строение, видимое невооруженным глазом.

2. Микроструктура материала – строение видимое в оптический микроскоп.

3. Внутреннее строение материалов – изучаемое на молекулярно-ионном уровне методами рентгенофазового анализов, рентгеноструктурного и электронной микроскопии.

Макроструктура:

• конгломератная (бетоны);

• ячеистая (газобетоны и пенобетоны, ячеистые пластмассы);

• мелкопористая (керамика);

• волокнистая (древесина, стеклопластики, минеральная вата);

• слоистая (фанера, слоистые пластики);

• рыхлозернистая (заполнители для бетона, наполнители для цементов, пластмасс и др.);

• макроструктура природных каменных материалов.

Микроструктура:

может быть кристаллическая и аморфная.

Кристаллическая форма всегда более устойчивая. Она имеет постоянную температуру плавления и определенную геометрию кристаллов (кристаллический кварц), составляющих материал. Свойства монокристаллов неодинаковы в разных направлениях. Это механическая прочность, теплопроводность, скорость растворения, электропроводность. Явление анизотропии является следствием особенностей внутреннего строения кристаллов.

Внутреннее строение материалов:

может быть в виде кристаллических решеток. Она может быть образована: нейтральными атомами (одного и того же элемента, как в алмазе или различных элементов как SiO2); ионами (разноименно заряженных, как в СaCO3, или одноименными, как в металлах); целыми молекулами (кристаллы льда).

От внутреннего строения зависят основные свойства материалов. Оно может изучаться методами рентгеноструктурного анализа, на сканирующем, растровом микроскопах-микроанализаторах и др.

Основные свойства строительных материалов.

В строительстве применяют разнообразные материалы. Чтобы облегчить изучение их особенностей, технические свойства материалов удобно свести в следующие группы: физические, механические, физико-химические и химические.

ФИЗИЧЕСКИЕ СВОЙСТВА

Параметры состояния

К ним относятся свойства, которыми обладает материал в естественном состоянии.

Истинная плотность

ρ(г/см3, кг/м3) – масса (m) единицы объема материала в абсолютно плотном состоянии — Va:

ρ = m/Va

Средняя плотность

ρm(г/см3, кг/м3) – масса (m) единицы объема материала в естественном состоянии (вместе с порами) — :

ρm = m /Vе

Относительная плотность

dвыражает среднюю плотность материала по отношению к плотности воды (безразмерная величина):

d = ρm /ρв, где

плотность воды ρв = 1г/см3

Плотность пористых материалов всегда меньше их истинной плотности.

Насыпная плотность

ρн(г/см3, кг/м3) – масса (m) единицы объема рыхло насыпанных зернистых или волокнистых материалов — (цемента, песка, щебня, минеральной ваты и др.):

ρн = m/Vн

Структурные характеристики.

Почти все строительные материалы имеют поры. Объем пористого материала V (см3; м3) в естественном состоянии (то есть вместе с порами) слагается из объема твердого вещества и объема порVп:

V = Vа +Vп

Строение пористого материала характеризуется общей, открытой и закрытой пористостью, распределением размера пор по их диаметрам или радиусам и их удельной поверхностью.

Пористость.

Степень заполнения объема материала порами

П = Vп/ Vе

Пористость выражают в долях от объема материала, принимаемого за 1, или в % от объема.

Определение пористости.

Экспериментальный (прямой) метод определения пористости основан на замещении порового пространства в материале сжиженным гелием, ртутью или другой средой. Для сравнения в табл. 1 приводятся параметры состояния некоторых строительных материалов.

Экспериментально-расчетный метод определения пористости использует найденные опытным путем значения плотности (%) высушенного материала:

П = (1 – ρm / ρ) · 100 , (%)

Пористость строительных материалов колеблется в широких пределах от 0 (стеклопластик) до 98% (вспененный полимер).

Коэффициент плотности.

Кпл. – степень заполнения объема материала твердым веществом

Кпл. = ρm / ρ

ρm- средняя плотность, (г/см3, кг/м3);

ρ – истинная плотность(г/см3, кг/м3).

В сумме П+Кпл. =1 (или 100%), т.е. высушенный материал можно представить состоящим из твердого каркаса, обеспечивающего прочность, и воздушных пор.

Пористый материал обычно содержит открытые и закрытые поры. Открытые поры материала сообщаются с окружающей средой, могут сообщаться между собой, поэтому они заполняются водой при обычных условиях насыщения (погружении в ванну с водой).

Пористость.

Дата добавления: 2016-11-04; просмотров: 1817;

Похожие статьи:

Сайт строителя

Классификация строительных материалов.

В настоящее время с возрастанием экономического потенциала страны строительству и строительным материалам уделяется очень много внимания. Современное строительство характеризуется высоким развитием научно-технической базы, обеспечивающей быстрый рост разработки новых эффективных строительных материалов, совершенствования технологии их производства, стремлением перенести значительную часть строительных процессов в условия производства, что позволяет значительно облегчить и улучшить условия труда, сократить его затраты и снизить стоимость продукции. Чем шире ассортимент, выше качество и ниже стоимость строительных материалов, тем успешнее осуществляется строительство.

В процессе строительства и эксплуатации зданий и сооружений строительные материалы, изделия и конструкции, из которых они возводятся, подвергаются различным физико-механическим, технологическим и химическим воздействиям. Поэтому от специалиста требуется умение со знанием дела правильно выбирать строительные материалы, изделия или конструкции, обладающие достаточной стойкостью, надежностью и долговечностью в конкретных условиях эксплуатации. Для этого необходимы специальные знания используемых материалов и изделий, перечень контролируемых свойств, их показатели, виды и классификации выпускаемой продукции.

Чтобы легче разобраться в многообразии материалов, применяемых в строительстве, их классифицируют (разделяют) на группы, обладающие одним общим признаком. В основном применяют классификацию строительных материалов по технологическому признаку. В основу такой классификации положены вид сырья, из которого изготовляют материалы и производственная технология, обеспечивающая получение материала.

Строительные материалы классифицируют:

  • по назначению (отделочные, конструкционные, гидроизоляционные, теплоизоляционные, акустические, герметизирующие, антикоррозионные);
  • по виду материала (древесные, каменные, полимерные, металлические, стеклянные, керамические и др.);
  • по способу получения (природные и искусственные).

Природные строительные материалы.

Природные строительные материалы добывают в местах их естественного образования (горные породы), или роста (древесина). Состав и свойства этих материалов в основном зависят от происхождения исходных пород и способа их обработки и переработки.

Искусственные строительные материалы

Искусственные строительные материалы изготавливают из природного минерального и органического сырья (песка, глины, нефти, газа, известняка и т.д.) и промышленных отходов (шлаков, золы и др.) по специальной технологии. Полученные искусственные материалы приобретают новые свойства, отличные от свойств исходного сырья.

Возможность использования материалов в строительных конструкциях и изделиях в значительной степени определяется его свойствам. Свойства материалов определяются составом и структурой материала. Структуру строительного материала изучают на микроуровне при помощи микроскопов и на макроуровне — визуально.

Микроструктура зависит от состава и может быть нестабильной, оцениваемой по вязкости и пластичности (лакокрасочные материалы, цементное тесто).

Классификация основных строительных материалов

Со временем она переходит в более устойчивую структуру: аморфную (стекло), характеризующуюся однородностью и хаотичным расположением молекул, или стабильную — кристаллическую (металлы, камень).

Кристаллическая структура строительного материала представляет собой кристаллическую решетку со строго определенным расположением атомов. Одним из основных показателей кристаллических решеток является прочность. На свойства материалов большое влияние оказывают форма, размеры и расположение кристаллов. Мелкокристаллические более однородны и стойки к внешним воздействиям. Крупнокристаллические материалы, например металлы, имеют большую прочность. Слоистое расположение кристаллов, как у сланцев, обеспечивает легкое раскалывание по плоскостям, что используется при получении отделочных плиточных материалов.

Микроструктуру искусственно полученных материалов можно целенаправленно регулировать в зависимости от задаваемых свойств и назначений изделий.

Макроструктура материала зависит от технологии получения материала и сырья. Так, стекло обладает плотной макроструктурой, пеносиликат — ячеистой, пластики — слоистой, песок и гравий -рыхлозернистой. Однако, имея одно и то же основное исходное сырье, например, глину, и изменяя технологию, можно получить облицовочные плитки плотной структуры, стеновой мелкопористый кирпич и теплоизоляционный ячеистый материал — керамзит.

Классификация строительных материалов.

Классификация строительных материалов по назначению. Основные свойства строительных материалов.

Классификация строительных материалов по назначению. Основные свойства строительных материалов.

Материаловедение — это наука, изучающая связь состава, строения и свойств материалов, закономерности их изменения при физико-химических, физических, механических и др. воздействиях.

Строительные материалы оказывают решающее влияние на технико-экономическую эффективность, безопасность строительства и эксплуатацию зданий и сооружений. Строительные материалы составляют более 50 % сметной стоимости объектов.

Данная дисциплина является первой инженерной дисциплиной, которая закладывает базу для изучения специальных дисциплин – строительных конструкций, технологии строительного производства, экономики, управления и организации строительства, архитектуры и др.

Каждый материал имеет название, структуру, показатели качества или свойства, их численные значения, способы производства, условия и особенности применения и т.д. Всё это надо знать, чтобы считать себя настоящим строителем.

Концепция безопасности по отношению к строительным материалам обозначает обеспечение функциональных свойств, экологической чистоты, пожаробезопасности и безвредности материалов в течение всего их срока службы. Это относится к конечной строительной продукции – конструкции, здания, сооружения, которые сделаны из строительных материалов. Поэтому для обеспечения безопасности необходимо знать функциональное назначение, условия эксплуатации конечной продукции при изучении, выборе и разработке строительного материала, что обеспечивает стабильность его показателей во время эксплуатации.

Любой строительный объект должен отвечать условиям безопасности, быть функционален и экономически состоятелен. Необходимо также учитывать желание заказчика.

Исходя из условий работы материала в сооружениях, строительные материалы можно разделить классифицировать по назначению и технологическому признаку на 2 группы:

Строительные материалы:

1 группа:

конструкционные материалы, которые воспринимают и передают нагрузки (природные каменные материалы, бетоны, растворы, керамика, стекло, ситаллы, металлы, полимеры, древесина, композиты и др.);

2 группа:

строительные материалы специального назначения — теплоизоляционные, акустические, гидроизоляционные, герметики, кровельные, отделочные, антикоррозионные, огнеупорные материалы, материалы для радиационной защиты и т.д.

Теплоизоляционные:

• основное назначение -свести до минимума перенос теплоты через ограждающие конструкции и тем самым обеспечить необходимый тепловой режим помещения при оптимальных затратах энергии.

Акустические:

(звукопоглощающие и звукоизоляционные) – снижающие уровень «шумового загрязнения» помещения.

Гидроизоляционные и кровельные:

• для создания водонепроницаемых слоев на кровле, подземных сооружениях и других конструкциях, которые необходимо защищать от воздействия воды или водяных паров.

Герметизирующие:

• для заделки стыков в сборных конструкциях.

Отделочные:

• для улучшения декоративных качеств строительных конструкций, а также для защиты конструкционных, теплоизоляционных и других материалов от внешних воздействий.

Специального назначения:

• (огнеупорные, кислотоупорные и т.д.), применяемые при возведении специальных сооружений.

Классификация.

В основу классификации по технологическому признаку положены вид сырья, из которого получают материал и способ изготовления.

Эти два фактора во многом определяют свойства материала и соответственно область его применения.

По способу изготовления различают материалы, получаемые:

— спеканием (керамика, цемент);

— плавлением (стекло, металлы);

— омоноличиванием с помощью вяжущих веществ (бетоны, растворы);

— механической обработкой природного сырья (природный камень, древесные материалы).

Свойства

Свойства материалов имеют названия и оцениваются численными значениями, которые устанавливаются путем стандартных испытаний.

Надежность.

• это комплексное свойство объекта сохранять во времени в установленных пределах значения всех параметров при выполнении требуемых функций в заданных условиях эксплуатации и технического обслуживания. Она складывается из долговечности, безотказности, ремонтопригодности и сохраняемости.

Долговечность.

• свойство объекта (изделия) сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта (срок службы).

Например, для железобетонных и каменных конструкций нормами предусмотрены три степени долговечности: I – соответствует сроку не менее 100 лет; II – 50 лет; III – 20 лет.

Безотказность — свойство изделия сохранять работоспособность в определенных режимах и условиях эксплуатации в течение некоторого времени без вынужденных перерывов на ремонт.

Отказомназывают событие, при котором система, элемент или изделие полностью или частично теряют работоспособность.

Ремонтопригодность.

• свойство объекта (изделия) к поддержанию и восстановлению работоспособного состояния при техническом обслуживании и ремонте.

Сохраняемость

• свойство объекта (изделия) сохранять в заданных пределах эксплуатационные показатели в течение и после срока хранения и транспортирования установленного технической документацией.

Состав и строение материалов.

Основные свойства строительных материалов (физические, механические, химические) определяются их химическим составом и строением.

В зависимости от химического состава строительные материалы принято делить на:

— органические (древесина, битум, пластмассы);

— неорганические (минеральные) (природный камень, бетон, керамика);

— металлические ( сталь, чугун, цветные металлы).

Химический состав.

неорганических веществ удобно выражать количеством содержащих в них оксидов (%). Основные и кислотные оксиды химически связаны между собой и образуют минералы, которые и определяют многие свойства материала.

Минеральный состав

• показывает, какие минералы и в каком количестве содержаться в строительном материале.

Фазовый состав

это наличие твердого вещества, образующее стенки пор т.е. «каркас» материала и поры, заполненные воздухом, газом или водой. Причем, если поры материала заполнены водой, то его, например, теплофизические свойства существенно изменяются, так же, как и влажностные деформации. Если вода в порах замерзает, то она изменяет свое фазовое состояние и возникают большие напряжения, которые весьма изменяют механические и деформативные свойства материала..

Вещественный состав

• составляют вещества, входящие в материал: например, многокомпонентные цементы и др.).

Состав

От состава материала зависит его структура или строение, которые, в свою очередь, влияют на его свойства.

В материаловедении принято использовать термин строение материала. Существует научно доказанная взаимосвязь между тремя составляющими выражения: «состав – структура – свойства».

Строение материала изучают на 3-х уровнях:

1. Макроструктура материала – строение, видимое невооруженным глазом.

2. Микроструктура материала – строение видимое в оптический микроскоп.

3. Внутреннее строение материалов – изучаемое на молекулярно-ионном уровне методами рентгенофазового анализов, рентгеноструктурного и электронной микроскопии.

Макроструктура:

• конгломератная (бетоны);

• ячеистая (газобетоны и пенобетоны, ячеистые пластмассы);

• мелкопористая (керамика);

• волокнистая (древесина, стеклопластики, минеральная вата);

• слоистая (фанера, слоистые пластики);

• рыхлозернистая (заполнители для бетона, наполнители для цементов, пластмасс и др.);

• макроструктура природных каменных материалов.

Микроструктура:

может быть кристаллическая и аморфная.

Кристаллическая форма всегда более устойчивая. Она имеет постоянную температуру плавления и определенную геометрию кристаллов (кристаллический кварц), составляющих материал. Свойства монокристаллов неодинаковы в разных направлениях. Это механическая прочность, теплопроводность, скорость растворения, электропроводность. Явление анизотропии является следствием особенностей внутреннего строения кристаллов.

Внутреннее строение материалов:

может быть в виде кристаллических решеток. Она может быть образована: нейтральными атомами (одного и того же элемента, как в алмазе или различных элементов как SiO2); ионами (разноименно заряженных, как в СaCO3, или одноименными, как в металлах); целыми молекулами (кристаллы льда).

От внутреннего строения зависят основные свойства материалов. Оно может изучаться методами рентгеноструктурного анализа, на сканирующем, растровом микроскопах-микроанализаторах и др.

Основные свойства строительных материалов.

В строительстве применяют разнообразные материалы. Чтобы облегчить изучение их особенностей, технические свойства материалов удобно свести в следующие группы: физические, механические, физико-химические и химические.

ФИЗИЧЕСКИЕ СВОЙСТВА

Параметры состояния

К ним относятся свойства, которыми обладает материал в естественном состоянии.

Истинная плотность

ρ(г/см3, кг/м3) – масса (m) единицы объема материала в абсолютно плотном состоянии — Va:

ρ = m/Va

Средняя плотность

ρm(г/см3, кг/м3) – масса (m) единицы объема материала в естественном состоянии (вместе с порами) — :

ρm = m /Vе

Относительная плотность

dвыражает среднюю плотность материала по отношению к плотности воды (безразмерная величина):

d = ρm /ρв, где

плотность воды ρв = 1г/см3

Плотность пористых материалов всегда меньше их истинной плотности.

Насыпная плотность

ρн(г/см3, кг/м3) – масса (m) единицы объема рыхло насыпанных зернистых или волокнистых материалов — (цемента, песка, щебня, минеральной ваты и др.):

ρн = m/Vн

Структурные характеристики.

Почти все строительные материалы имеют поры. Объем пористого материала V (см3; м3) в естественном состоянии (то есть вместе с порами) слагается из объема твердого вещества и объема порVп:

V = Vа +Vп

Строение пористого материала характеризуется общей, открытой и закрытой пористостью, распределением размера пор по их диаметрам или радиусам и их удельной поверхностью.

Пористость.

Степень заполнения объема материала порами

П = Vп/ Vе

Пористость выражают в долях от объема материала, принимаемого за 1, или в % от объема.

Определение пористости.

Экспериментальный (прямой) метод определения пористости основан на замещении порового пространства в материале сжиженным гелием, ртутью или другой средой. Для сравнения в табл. 1 приводятся параметры состояния некоторых строительных материалов.

Экспериментально-расчетный метод определения пористости использует найденные опытным путем значения плотности (%) высушенного материала:

П = (1 – ρm / ρ) · 100 , (%)

Пористость строительных материалов колеблется в широких пределах от 0 (стеклопластик) до 98% (вспененный полимер).

Коэффициент плотности.

Кпл. – степень заполнения объема материала твердым веществом

Кпл. = ρm / ρ

ρm- средняя плотность, (г/см3, кг/м3);

ρ – истинная плотность(г/см3, кг/м3).

В сумме П+Кпл.

Классификация строительных материалов.

=1 (или 100%), т.е. высушенный материал можно представить состоящим из твердого каркаса, обеспечивающего прочность, и воздушных пор.

Пористый материал обычно содержит открытые и закрытые поры. Открытые поры материала сообщаются с окружающей средой, могут сообщаться между собой, поэтому они заполняются водой при обычных условиях насыщения (погружении в ванну с водой).

Пористость.

Дата добавления: 2016-11-04; просмотров: 1816;

Похожие статьи:

Строительные материалы: виды, свойства, сферы применения

В процессе возведения и эксплуатации здания строительные конструкции подвергаются технологическому, физическому, механическому воздействию, то есть долговечность и устойчивость строения напрямую зависит от грамотности выбора используемых материалов. Широкий ассортимент строительных материалов состоит из двух категорий: в первую входят вещества общего назначения (бетон, лесоматериалы, кирпич, цемент), востребованные для возведения большинства элементов зданий, во вторую – материалы специального назначения (акустические, теплоизоляционные, гидроизоляционные и пр.).

Требования, влияющие на область использования

При выборе строительных материалов необходимо обратить внимание на 4 группы их свойств, влияющих на сферу применения. Физические свойства определяют плотность – относительную, истинную, среднюю, насыпную. От механических характеристик зависят пределы прочности при сдвиге, растяжении, сжатии, изгибе, а также пластичность, твердость и жесткость. Химические свойства выявляют устойчивость материалов к агрессивному воздействию внешней среды.

Классификация строительных материалов по назначению, виду материала, способу получения.

Технологические свойства заключаются в теплоустойчивости, скорости плавления, высыхания, затвердевания.

Теплоизоляционные материалы

Теплоизоляционные материалы характеризуются малой теплопроводностью, это позволяет использовать их для тепловой защиты помещений, защиты от нагревания и технической изоляции. Данные материалы бывают неорганическими (минеральная вата, стекловата, пеностекло), растительными (целлюлозная вата, ДСП, ДВП), пробковыми, полимерными (пенопласт, пенополиуретан, пенополистирол), отражающими.Важные характеристики теплоизоляционных материалов: коэффициент теплопроводности, пористость, плотность, влажность, паропроницаемость, водопоглощение, биостойкость, водостойкость, прочность, теплоемкость, морозостойкость.

Пиломатериалы

В строительстве востребованы лиственницы, ели, сосны и их пиломатериалы. Чаще всего используется сосна, так как она характеризуется оптимальным процентом смол, которые способны предотвратить загнивание даже в условиях повышенной влажности. Ель больше пригодна для несущих конструкций, так как в ней меньше смолистых веществ. Кроме бревен, востребованы и брусья, а также обрезные материалы и полуфабрикаты, например, доски, облицовочные и половые рейки. Погонажные изделия – это наличники, поручни, подоконники, плинтусы.

Древесину принято подразделять на типы в зависимости от уровня ее влажности: абсолютно сухая, комнатно-сухая, воздушно-сухая, влажная и естественно-влажная. На основе приведенной классификации определяется назначение пиломатериалов в строительстве.

Облицовочные материалы

Для наружной облицовки — это композитные панели, фасадный керамогранит, сайдинг, фасадные кассеты, плиты, штукатурные смеси, металлокассеты и др. Облицовочные материалы, чаще всего, выполняют декоративные и защитные функции. Для внутренней облицовки используются природные и искусственные материалы, украшающие холлы, лестницы, вестибюли, залы, стации, помещения, отличающиеся повышенной влажностью.

Отделочные материалы

Материалы, предназначенные для внутренней и наружной отделки, используются с целью усиления декоративных и эксплуатационных качеств строений, защиты конструкций от внешних воздействий. К ним можно отнести бетоны и отделочные растворы, керамику, древесные изделия, каменные материалы (искусственные и природные), металл, бумагу, пластмассу, стекло. В отдельную группу выделены материалы, предназначенные для обработки полов.

Лакокрасочные материалы

Лакокрасочными называют материалы, наносимые в порошкообразном или жидком состоянии на очищенную поверхность с целью образования плотно прилегающей пленки. Данные вещества используются для защиты деревянных и металлических изделий от разрушения под действием внешней среды. Ассортимент лакокрасочных материалов включает в себя лаки, грунтовки, эмали, шпаклевки, краски. В качестве основных их компонентов можно выделить наполнители, растворители, пленкообразующие пигменты, пластификаторы, добавки и сиккативы.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *